
About the Authors

Jason Grieves is a Program Manager in the Windows Accessibility Group.

Jason works with students of all ages to identify their abilities rather than

disabilities. In turn, he finds solutions to use those abilities to live, work,

and play.

Masahiko Kaneko is a Senior Program Manager for UI Automation. A

program manager in accessibility at Microsoft for more than 10 years, he

has been involved with several releases of the Windows Operating System

as well as many other Microsoft products.

Technical Contributors

Larry Waldman has been a Program Manager working on Microsoft Office and accessibility

for more than four years. While working on Office, he has led research in graphics acces-

sibility, and recently became the driver for accessibility across the entire line of Office

products.

Annuska Perkins is a Senior Accessibility Strategist at Microsoft. She is passionate about

improving the usability and effectiveness of accessible technology solutions. She does product

planning and incubation, in collaboration with business groups across Microsoft.

Greg Rolander is a programming writer in the Windows Experience division. Greg writes the

documentation for the Windows SDK for the Windows Automation API, as well as several

other Windows components.

vii

Introduction
What comes to mind when you think of accessibility? If you’re like most people, you might

conjure up images of a wheelchair or perhaps someone who is blind. What about someone

with a broken arm, a child with a learning disability, or a 65-year-old who needs high-

prescription eyeglasses to read? When it comes to technology, accessibility pertains to a

wide range of people with a wide range of abilities, not just the folks with disabilities.

Accessible technology is technology that users can adapt to meet their visual, hearing,

dexterity, cognitive, and speech needs and interaction preferences. Accessible technology

includes accessibility options and utilities built into products, as well as specialty hardware

and software add-ons called assistive technology (AT) that help individuals interact with a

computer.

There are essentially two types of users of accessible technology: (1) those who need it,

because of disabilities or impairments, age-related conditions, or temporary conditions (such

as limited mobility from a broken arm), and (2) those who use it out of preference, for a more

comfortable or convenient computing experience. The majority of computer users (54 per-

cent) are aware of some form of accessible technology, and 44 percent of computer users use

some form of it, but many of them are not using AT that would benefit them (Forrester 2004).

A 2003–2004 study commissioned by Microsoft and conducted by Forrester Research

found that over half—57 percent—of computer users in the United States between the

ages of 18 and 64 could benefit from accessible technology. Most of these users did not

identify themselves as having a disability or impaired but expressed certain task-related

difficulties or impairments when using a computer. Forrester (2003) also found the

following number of users with these specific difficulties:

 One in four experiences a visual difficulty.

 One in four experiences pain in the wrists or hands.

 One in five experiences hearing difficulty.

Besides permanent disabilities, the severity and type of difficulty or impairment an individual

experiences can vary throughout a person’s life. Table I-1 lists the four key classes of disabil-

ities and the types of accessibility options, utilities, or AT devices your users might use to

address their difficulties or impairments.

Introduction viii

TABLE I-1 Possible AT solutions users might use to address their difficulties or

impairments

Class of Disability User Experience Without AT Possible AT Solutions

Vision

Mild (low vision, color

blindness)

Difficulty with legibility of soft-

ware and hardware interfaces

 Setting changes to font size

and colors

 Alternative font style and

rasterization

 Larger screens

Severe (blindness) Unable to use computer monitor,

need the option of receiving

information through hearing or

touch

 Screen reader (for text-to-

speech and sound cues)

 Audio description of video

 Refreshable Braille display

 Keyboard navigation

Dexterity

Mild (temporary pain, reduced

dexterity such as from a broken

arm) to severe (paralysis, maybe

carpal tunnel syndrome)

Using standard mouse or

keyboard is painful or difficult

 Fine-tuning mouse and

keyboard

 Software (on-screen) keyboard

and mouse alternative

 Speech recognition utility

 Alternative input device, such

as a joystick or head-tracking

mouse

Hearing

Mild (hard of hearing) to

severe (deaf)

Difficulty distinguishing words

and sounds or not at all, need to

receive information visually

 Volume adjustments

 Sounds supplemented by

visual cues

 Multimedia captioning

 Sign language

Cognitive

Mild (learning difficulties) to

severe (Alzheimer’s, dementia)

Difficulty with word recognition,

memory, concentration, and

reasoning; UI might be over-

whelming

 Reading and learning aids

 Word prediction programs

 Audio speech paired with

visual presentation

 Simplified UI

 Task reminders

 Introduction ix

By 2010, the number of accessible technology users is expected to rise to 70 million, up from

57 million users in 2003 (Forrester 2004). Among users who use built-in accessibility options

and utilities, 68 percent have mild or severe difficulties or impairments, whereas the remaining

32 percent have no difficulties or impairments (Forrester 2004). Among users who use AT

products, such as trackballs or screen magnifiers, 65 percent did not report health issues as

reasons for using AT products, but rather cited that these products make computers easier to

use, more comfortable, and more convenient, or that they wish to avoid developing a future

health issue (Forrester 2004).

If a majority of your users could benefit from your product being accessible, doesn’t it just

make sense to build an accessible product? If you have decided to do so, you are sending a

message to your customers that their needs matter. Populations in many countries are getting

older. Civil rights for people with disabilities are gradually being extended to encompass

digital inclusion. Governments are requiring procurement officials to purchase products that

are the most accessible (mandated in the U.S. by Section 508 of the Rehabilitation Act). For

technology producers, creating accessible products is just the right thing to do, and it makes

good business sense.

Who Should Read This Book
This book is intended to be an introduction to create accessible software products. If you want

to understand how to incorporate programmatic access and keyboard access into your inter-

faces and how accessibility fits into the software development cycle, this book is for you. If

you are a project manager or someone who is overseeing the development of an accessible

product, you should also find this book helpful in understanding how accessibility is inte-

grated at each stage of the development cycle.

What This Book Covers
As you might guess, accessibility should be integrated from the beginning of the product

development cycle, when the application or product is in the planning or design phase, rather

than later, when retrofitting your product for accessibility can be extremely costly—and

sometimes impossible, because part of accessibility development requires attention at the

architecture level. This book will guide you through the process of planning for the two crit-

ical pieces for accessibility, programmatic access and keyboard access, from the beginning of

the software development lifecycle and integrating it throughout. It is, therefore, suggested

that you first read the chapters in this book sequentially and then afterwards use this book as

a reference as you develop your product. This book will also show you how to map out the

logical hierarchy for your product and plan for implementation using UI Automation (UIA),

Microsoft’s accessibility API, to create products that work with assistive technologies.

Introduction x

Here is what to expect in each chapter:

 Chapter 1, “The UI Automation Environment,” provides definitions and an

overview of UIA and its role in accessibility.

 Chapter 2, “Designing the Logical Hierarchy,” walks you through the steps for

designing a logical hierarchy of your product, which will serve as a model for your

accessibility implementation.

 Chapter 3, “Designing Your Implementation,” guides you through the process

of designing the implementation of the controls in your UI.

 Chapter 4, “Testing and Delivery,” discusses testing for the programmatic access

and keyboard access in your product and documentation for delivery, as well as a

brief summary of steps for incorporating accessibility into your product.

The Basics
As mentioned, programmatic access and keyboard access are two critical pieces to accessi-

bility and are the basis for this book. Let’s go over these two areas a little further, as well as

some basic information and settings you should be aware of when developing for accessi-

bility.

Programmatic Access

Programmatic access is critical for creating accessibility in applications. Programmatic access is

achieved when an application or library of UI functionality exposes the content, interactions,

context, and semantics of the UI via a discoverable and publicly documented application pro-

gramming interface (API). Another program can use the API to provide an augmentative,

automated, or alternate user interaction. Basic information conveyed through programmatic

access includes: navigation, interactive controls, asynchronous changes to the page, keyboard

focus, and other important information about the UI.

Programmatic access involves ensuring all UI controls are exposed programmatically to the

AT. Without it, the APIs for AT cannot interpret information correctly, leaving the user unable

to use the products sufficiently or forcing the AT to use undocumented programming inter-

faces or techniques never intended to be used as an ―accessibility‖ interface. When UI controls

are exposed to AT, the AT is able to determine what actions and options are available to the

user. Without proper programmatic access, a user may receive useless, erroneous, or even no

information about what they are doing in the program.

 Introduction xi

Keyboard Access

Keyboard access pertains to the keyboard navigation and keyboard focus of an application.

For users who are blind or have mobility issues, being able to navigate the UI with a keyboard

is extremely important; however, only those UI controls that require user interaction to func-

tion should be given keyboard focus. Components that don’t require an action, such as static

images, do not need keyboard focus.

It is important to remember that unlike navigating with a mouse, keyboard navigation is

linear. So, when considering keyboard navigation, think about how your user will interact with

your product and what the logical navigation for a user will be. In Western cultures, people

read from left to right, top to bottom. It is, therefore, common practice to follow this pattern

for keyboard navigation, though there are exceptions to this practice.

When designing keyboard navigation, examine your UI, and think about these questions:

 How are the controls laid out or grouped in the UI?

 Are there a few significant groups of controls?

o If yes, do those groups contain another level of groups?

 Among peer controls, should navigation be done by tabbing around, or via special

navigation (such as arrow keys), or both?

The goal is to help the user understand how the UI is laid out and identify the controls that

are actionable. If you are finding that there are too many tab stops before the user completes

the navigation loop, consider grouping related controls together. Some controls that are

related, such as a hybrid control, may need to be addressed at this early exploration stage.

Once you begin to develop your product, it is difficult to rework the keyboard navigation, so

plan carefully and plan early!

Go further: For guidelines on designing keyboard focus and keyboard navigation, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Respect Your User

When developing accessible products, a key thing to keep in mind is to respect your end

user’s preferences and requirements. Whether they are selecting larger icons, choosing high

contrast, or using a screen reader, users configure their system settings for a more comfor-

table user experience. It is absolutely essential, then, that you allow system-wide settings to

work with your product. Overriding those settings through hard-coding might impede or

even prevent a user from accessing parts of your products.

Introduction xii

Visual UI Design Settings

When designing the visual UI, ensure that your product has a high contrast setting, uses the

default system fonts and smoothing options, correctly scales to the dots per inch (dpi) screen

settings, has default text with at least a 5:1 contrast ratio with the background, and has color

combinations that will be easy for users with color deficiencies to differentiate.

High Contrast Setting

One of the built-in accessibility features in Microsoft’s Windows operating systems is the High

Contrast mode, which heightens the color contrast of text and images on the computer

screen. For some people, increasing the contrast in colors reduces eyestrain and makes it

easier to read. When you verify your UI in high contrast, you want to check that controls, such

as links, have been coded consistently and with system colors (not with hard-coded colors) to

ensure that they will be able to see all the controls on the screen that a user not using high

contrast would see.

System Font Settings

To ensure readability and minimize any ―unexpected‖ distortions to the text, make sure that

your product always adheres to the default system fonts and uses the anti-aliasing and

smoothing options. If your product uses custom fonts, users may face significant readability

issues and distractions when they customize the presentation of their UI (through the use of

a screen reader or by using different font styles to view your UI, for instance).

High DPI Resolutions

For users with vision impairments, having a scalable UI is important. UIs that do not scale

correctly in high dpi resolutions may cause important UI components to overlap or hide other

components and can become inaccessible. Since the release of Windows Vista, the Windows

platform replaced large font settings with dpi configurations.

Go further: For more information on how to write high dpi applications, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

 Introduction xiii

Color Contrast Ratio

The updated Section 508 of the Americans with Disability Act, as well as other legislations,

requires that the default color contrasts between text and its background must be 5:1. For

large texts (18-point font sizes, or 14 points and bolded) the required default contrast is 3:1.

Go further: For more information on checking color contrast, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Color Combinations

About 7 percent of males (and less than 1 percent of females) have some form of color defi-

ciency. Users with colorblindness have problems distinguishing between certain colors, so it is

important that color alone is never used to convey status or meaning in an application. As for

decorative images (such as icons or backgrounds), color combinations should be chosen in a

manner that maximizes the perception of the image by colorblind users.

Go further: For more information on color combinations, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

How Accessibility Fits into the Development Cycle
Now that we’ve covered some of the basics, let’s talk about how accessibility fits into each

stage of the development cycle—requirements, design, implementation, verification, and

release. You can adapt this model to the development cycle for your product. Figure I-1

provides a comprehensive view of a traditional software development cycle and activities

you can do to incorporate accessibility into your product.

Introduction xiv

FIGURE I-1 The development cycle

 Introduction xv

Requirements Stage

There may be a variety of reasons why you may want to incorporate accessibility into your

product for a variety of reasons: you want to create software that’s accessible for a loved one,

you hope to sell your product to the U.S. government, you want to expand your market base,

your company or the law requires it, or you simply desire to do the right thing for your cus-

tomers. When you decide to create a new product or update an existing one, you should

know whether you will incorporate accessibility into your product.

Once you have set your requirements, generate personas that exemplify users of varying types

of abilities. Create scenarios to determine what design features will delight and assist your

users, and illustrate how your users will accomplish tasks with your product. Prioritize your

features, and make sure that all users can complete your use cases. Beware of blanks in your

specifications! Your goal is to ensure that your product will be usable by people of varying

abilities.

Go further: For more information on personas, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Design Stage

In the design stage, the framework you will use is critical to the development of your product.

If you have the luxury of choosing your framework, think about how much effort it will take to

create your controls within the framework. What are the default or built-in accessibility prop-

erties that come with it? Which controls will you need to customize? When choosing your

framework, you are essentially choosing how much of the accessibility controls you will get

―for free‖ (that is, how much of the controls are already built-in) and how much will require

additional costs because of control customizations. If accessibility was implemented in the

past, look at the design docs for those earlier versions to see how accessibility features were

implemented in them.

Once you have your framework, design a logical hierarchy to map out your controls (Chapter

2 covers this topic in more detail). If your design is too complex, or your framework won’t

even support the features that you are thinking of, it may not be worth the time, money, or

effort to develop them. Accessibility can sometimes be a way to measure the usability and

approachability of your product’s overall design. For instance, if you are finding that the

design of your keyboard navigation or logical hierarchy is becoming way too complex, it’s

likely that your user will have a hard time navigating your UI and will have a bad experience

with your product. Go back to the drawing board, and make sure you are following funda-

mental user experience (UX) and accessible design practices. It’s likely that somebody has

already addressed the same design issues you’re facing.

Introduction xvi

When you have designed your programmatic access and keyboard access implementation,

ensure that all accessibility API information is noted in the specs, including all the basic

development settings touched on earlier (settings for high contrast, system font defaults, a

dpi-aware UI, a 5:1 text-to-background contrast ratio, and color combinations that will be

easy for users with color deficiencies to differentiate). Keep in mind that it may be harder (or

easier) to adhere to certain accessibility settings, depending on the framework. Programmatic

access is often limited by the UI framework for the application, so it is crucial in the design

stage to reconfirm the standards and expectations of the accessibility API supported by the UI

framework. Keyboard navigations and the flexibility of accessibility implementations are

usually tied to the architecture of the UI framework.

It is absolutely critical to note that when designing your programmatic access, you should

avoid creating new custom controls as much as possible, because the cost for development,

documentation, and help on how to interact with the control is significant, and ATs may not

know how to interact with the control.

Implementation Stage

In the implementation stage, you will need to make sure that the chosen architecture and

specs will work. If the specs do not work, go back to the design stage, and figure out a more

effective or less expensive alternative.

When you implement the specs, be sure to keep the user experience in mind as you develop

your product. Accessibility personas are great for reminding you of who your users are!

Verification Stage

In the verification or test stage, ensure that all the specs were implemented correctly and that

the accessibility API is reporting correctly for programmatic access. Your accessibility API,

such as UIA, must expose correctly to AT. For testing, use both accessibility test tools and full-

featured, third-party accessibility aids. Write test cases and build verification tests for your

accessibility scenarios to ensure that all the specs were implemented correctly.

 Introduction xvii

Consider leveraging automated testing, and establish a process and metrics for accessibility

bugs. You want to have clear and consistent severity ratings for these problems. Such ratings

may look something like the following:

 High severity means that no workarounds are available for your target users, or the bug

blocks the user from completing the task.

 Moderate severity means that workarounds are available, or that the bug does not block

the user’s ability to complete the operation. Do not overlook moderate severity issues,

just because there is a workaround. These issues can sometimes introduce other,

significant usability or product quality issues.

 Low severity means that the bug’s impact to accessibility with workarounds is low.

The verification stage is a good time to start documenting all the accessibility options and

features of your product. Just be sure to create documentation for your users in accessible

formats! If you hope to sell your product to the U.S. government, you may also start funneling

this information into a Section 508 Voluntary Product Accessibility Template (VPAT), which is a

standardized form developed by the Information Technology Industry Council (ITIC) to show

how a software product meets key regulations of Section 508 of the Rehabilitation Act. You

absolutely want to address any high severity issues before the VPAT process, as any problems

with your product will be subject to VPAT documentation.

Before your final release, be sure to obtain and incorporate feedback from your customers

and partners throughout the development cycle. Include people with disabilities in your

usability studies and beta testing. Work with your usability team to plan for specific accessi-

bility studies. Include AT vendors in feedback programs, and collaborate with them to ensure

that their products work with yours. Ideally, you should not need to make any major changes

to your product at this stage. Any major (or expensive) changes should be reserved for your

next revision.

Go further: For more information on accessibility tools and declarations of conformance, go to

http://go.microsoft.com/fwlink/?LinkId=150842.

Release Stage

In the release stage, continue to engage with AT vendors and users. Include accessible docu-

mentation both internally and externally with your product, and collaborate with your

marketing group on go-to-launch activities and external messaging for your product.

Introduction xviii

Ready, Set, Go!
At this point, you should now have a general understanding of what accessibility is, the types

of AT your users may be relying on to use your product, the basic development settings you

should include in your product, and how accessibility fits into the development cycle. You are

now ready to learn more about the various components in the UIA architecture, how to

design a logical hierarchy, design your implementation, and how to test your implementation

and deliver your product. Through each stage of the process, you will continue to learn how

to set the foundation for accessibility through programmatic access and keyboard access. For

more information on the visual UI design settings mentioned earlier (such as high contrast,

default font, and high dpi settings), which are also necessary for an accessible product, check

out the sample of resources we provide to get you started.

Remember, designing and developing for accessibility is one of the best ways to give you

clarity about the user experience in general. By creating accessible products, you are working

to improve the user experience for all people. The next chapter proceeds with an introduction

to UIA, Microsoft’s accessibility API, which will help you integrate accessibility into your

product.

Find Additional Content Online As new or updated material becomes available that com-

plements your book, it will be posted online on the Microsoft Press Online Developer Tools Web

site. The type of material you might find includes updates to book content, articles, links to com-

panion content, errata, sample chapters, and more. This Web is available at www.microsoft.com/

learning/books/online/developer, and is updated periodically.

Support for This Book
Every effort has been made to ensure the accuracy of this book. As corrections or changes are

collected, they will be added to a Microsoft Knowledge Base article.

Microsoft Press provides support for books at the following Web site:

http://www.microsoft.com/learning/support/books/

 Introduction xix

Questions and Comments

If you have comments, questions, or ideas regarding the book, or questions that are not

answered by visiting the sites above, please send them to Microsoft Press via e-mail to

mspinput@microsoft.com.

Or via postal mail to

Microsoft Press

Attn: Engineering Software for Accessibility Editor

One Microsoft Way

Redmond, WA 98052-6399.

Please note that Microsoft software product support is not offered through these addresses.

References
Forrester Research, Inc. 2004. ―Accessible Technology in Computing: Examining Awareness,

Use, and Future Potential.‖ Cambridge, MA: 22–41.

————. 2003. ―The Wide Range of Abilities and Its Impact on Technology.‖ Cambridge, MA:

7–18.

